Recommendations for a Water Quality Buffer System for the Inland Bays Watershed

Delaware Center for the Inland Bays Scientific & Technical Advisory Committee Meeting June 6th, 2008

Chris Bason

Science & Technical Coordinator

Talk Outline

- Put development of buffer system into context
- Define water quality buffers
- Describe the recommendations by waterbody types
- Apply the buffer systems to developments proposed to the Preliminary Landuse Service

Context for the Development of the Buffer System

- Focus on Atlantic Coastal Plain
- As a recommendation for the Pollution Control Strategy to meet Total Maximum Daily Loads reductions for nitrogen and phosphorus
- To maximize nutrient reductions and limit its affect on development site design
- Include flexibility per Comprehensive Conservation and Management Plan
- For application on developing lands

Definition of Water Quality Buffers

- Water quality buffers are natural areas between active landuses and wetlands or waterbodies. Buffers are managed for the primary purposes of:
- 1. sustainable removal and retention of pollutants entering wetlands or waterbodies,
- 2. to protect wetlands or waterbodies against encroachment and physical alterations, and
- 3. to allow wetlands or waterbodies to maximize their own natural capacities to reduce pollution.

General Description of Water Quality Buffer Function: Riparian Ecosystem

Nutrient Source Reduction from Critical Areas

Filtration of H20
Through Buffer

Restoration or Protection of Nutrient
Processing Capacity

NUTRIEN

PROCESSING

Wetlands & Waterways of the Inland Bays Watershed

Headwaters

- Are closest to landuses such as development and receive the highest concentrations of pollutants.
- Forested buffers filter pollutants from surface water runoff and groundwater.
- The roots, leaves, and branches from the forested buffers slows water in the channel filtering more nutrients and decreasing pollution downstream.

Larger Streams & Riverine Wetlands

- Are fed mostly by groundwater and floodwaters from upstream.
- The wetlands filter pollutants and store floodwaters from the stream.
- Forested buffers protect stream channels and their wetlands because they work together to filter nutrients.

Flats & Depressional Wetlands

- Are very important for habitat and water quality, but many are not legally protected.
- $\bullet\,\mbox{ln}$ winter and summer they store and filter ground and surface water .
- In summer they also can supply clean water to drinking water aquifers.

Saltmarshes

- Saltmarshes filter and store great amounts of nutrients in their grasses and soils.
- Saltmarshes need wide buffers because they move landward as sea level rises.
- $\bullet \ Rising \ sea\ level\ reduces\ salt\ marsh\ area, which\ reduces\ capacity\ to\ filter\ nutrients.$
- Sea levels are expected to rise faster in the coming years.

Previous sea level

Importance of Riparian Buffers

- Effective: Coastal Plain riparian buffers were found to retain 23 to 65 lbs of nitrogen (67-89% of inputs) and 1.1 to 2.6 lbs of phosphorus (24-81% of inputs) per acre of buffer per year (Lowrance et al. '97).
- Efficient: Long term investment with little to no maintenance relative to other pollution control measures
- Variable: Difference in effectiveness results from great variability among riparian areas

Characteristics of a Buffer System

- Extent: What waterbodies to buffer
- Vegetation Type
- Width
 - By waterbody type
 - Along an individual waterbody: fixed width vs. variable width
 - Where to buffer from

Buffer Extent

- "Perhaps the most important guiding principles to emerge from the current scientific literature that should be considered when implementing riparian setback regulations are:
 - (1) The importance of contiguity in riparian protection and
 - (2) The great value and importance of protecting the least disturbed riparian corridors in communities."
 - -- David Correll, of the Smithsonian Environmental Research Center, after a career studying riparian zones (Ecological Engineering 2005)

What waterways are the most important to buffer for water quality protection?

HEADWATERS

- Comprise ~75% of waterway length in watersheds
- Tend to have the highest nutrient concentrations because they are the first to receive inputs -- are in "tight" connection with landuses
- Rates of nitrogen removal are higher
 (Peterson et al. '01, Seitzinger et al. '02, Alexander et al. '07)

Nutrient Processing by Stream Size

Vegetation Type Grass vs. Forest

- Forested buffers remove 36% more N on average than grassed buffers (Mayer et al. 2007)
- Forested buffers take up 11 37 lbs of N and 2 – 5 lbs of P per acre per year into wood (Correll et al. '89&'84 Fail et al. '87&86)
- Soil organic matter is over twice as high in forested buffers (Brinson et al. 2006)
- Forested buffers improve instream processing of nutrients (Sweeney et al. 2004)

Buffer Width: Where to Buffer From in Riparian Ecosystems Channel or Wetland?

- Streams and their wetlands are linked in their capacity to filter pollution
- Where wetlands are present, buffers begin at edge of wetland
- Wetlands of 21 non-tidal waterways were 112' wide from the channel to the upland edge.

- Alone, may not protect all wetlands
- •Adds little protection to wetlands already protected under CWA.
- Does not protect existing riparian upland forest

- Buffers entire functional ecosystem
- Protects valuable existing riparian upland forest
- Protects against closest sources of pollutants

So How Wide Should a Buffer Be?

Effect of Buffer Width on Nitrogen Removal for 17 Atlantic Coastal Plain Riparian Buffers

Effect of Riparian Buffer Width on Nitrogen

- A point was identified between 80 and 90 feet, where only a 2% increase in removal efficiency was gained for each additional foot of width.
- At 80 feet wide, buffers averaged nearly 80% nitrogen removal, with at least 67% removal occurring for most buffers (95% confidence interval lower bound).
- The data also suggests a threshold of 150 feet and above where buffers more consistently reach their maximum potential for nitrogen removal and where they averaged 90% reduction.

Effect of Buffer Width on Phosphorus Removal for 31 Buffers from All Over

Effect of Riparian Buffer Width on Phosphorus

- Highly variable and not a significant relationship between width and removal
- The data indicates that around 80 feet removal averaged 66% with around 50% removal occurring for most buffers (lower 95% confidence interval)
- Also around 80 feet there visually appeared to be a point where buffers more consistently removed more phosphorus

Buffer Width: Variable width vs. Fixed width

 Variable width buffers remove less pollution than fixed width buffers of equivalent average width

 Areas of narrow/absent buffers contribute relatively high levels of pollution

- Extra pollutant discharge from below average width buffers is more than the extra pollutant retention from above average width buffers
- Effect most important for narrow average width buffers

(Weller et al '98 modelling study)

Tidal Wetlands and Waters

- As much as 75% of the nitrogen from the Rehoboth Bay watershed moves as groundwater that regularly discharges near and within tidal wetlands (Volk et al. 2006 and Ullman personal comm. 2007).
- Migrate inland with rising seas
- Buffer width determined by nutrient reduction and migration
- Wendy Carey's Phd Thesis documented rates

Tidal Wetlands and Waters

- As much as 75% of the nitrogen from the Rehoboth Bay watershed moves as groundwater that regularly discharges near and within tidal wetlands (Volk et al. 2006 and Ullman personal comm. 2007).
- Migrate inland with rising seas
- Width of buffer determined by nutrient reduction efficiency and migration rates
- Wendy Carey's Phd Thesis documented rates
 - Ground truthed aerial photography interpretation of marsh migration using vegetation types
 - Used metric mapping work of Leatherman at the University of Maryland Coastal Research Lab

Location of 8 Metric Mapping Sites

Figure 7.17 Metric map for Indian River Bay, Frame #40.

Rates of tidal wetland migration inland by adjacent slope in the Inland Bays derived from metric mapping analysis 1926-1989

Slope of Adjacent Upland	Indian River Bay	Rehoboth Bay
Gradual (<0.08 rise/run)	5.25 ft/yr	6.07 ft/yr
Steep (>0.09 rise/run)	1.44 ft/yr	0.82 ft/yr

^{*}Rates are highly variable but controlled primarily by slope

Years upland buffers of different widths will provide protection to tidal wetlands or waters

	Indian R	iver Bay	Rehoboth Bay		
Upland Buffer Width	Gradual Slope	Steep Slope	Gradual Slope	Steep Slope	
50'	10	35	8	61	
75'	14	52	12	91	
100'	19	69	17	122	
200'	38	139	33	244	
300'	57	208	49	366	
400'	76	278	66	488	
500'	95	347	82	610	

Flats & Depressional Wetlands

Flats & Depressional Wetlands

- No information found relating buffer width to pollutant removal
- Nearby development can alter hydrodynamics to affect water storage and nutrient processing
- 50 and 100 foot buffers more or less arbitrarily selected
- More study needed to confirm effectiveness of buffers for nutrient removal

Protection Alternatives: Width

Buffer System Characteristic	Adequate Alternative	Optimum Alternative	
Buffer Width Variation	Variable Width	Fixed Width	
Tidal Wetlands & Waters			
Gradual Upland/Wetland Boundary	300 ft (53 yrs)	500 ft (88 yrs)	
Steep Upland/Wetland Boundary	80 ft (71 yrs)	150 ft (132yrs)	
Nontidal Wetlands and Waterways			
Flats and Depressional Wetlands	50 ft	100 ft	
Riparian Wetlands	80 ft	150 ft	
Headwaters Streams & Ditches	80 ft	150 ft	
Larger Streams & Ditches	80 ft	150 ft	

Dominance corresponds to the vegetation requirements of the 2005 version of the PCS. See Tidal Wetlands &

Analysis of Recommendations Applied to Developments

 11 randomly selected PLUS applications: '04-'06.

 Separated into large (>75th%tile) & small projects (<50th%tile) and by watershed region

Estimated %
 developable acreage as
 buffer by waterbody
 type and buffer
 alternative

Results

- On average, buffers were within range of current County open space requirements
 - Adequate = 13.8% of developable acreage
 - Optimum = 33.2% of developable acreage
- Buffer acreage evenly split between nontidal wetlands, ditches, and tidal areas.
- Sites with tidal wetlands by low lying uplands had very large areas as buffers
- Smaller sites, and sites in poorly drained regions tended to have larger areas as buffers

Site Characteristics

Adequate Alternative

Acreage	12
Developable Ac.	9
% Dev. Ac. in Buffer (Adequate)	61
% Dev. Ac. in Buffer (Optimum)	89

Development Buffer Types
Waterbody Type Nontidal Waterway
Tidal Nontidal Wetland
Nontidal Wtlnds Tidal Wetlands
- Major Ditches

Site

Characteristics

Adequate Alternative

Acreage	314
Developable Ac.	309
% Dev. Ac. in Buffer (Adequate)	1.8
% Dev. Ac. in Buffer (Optimum)	3.7

Additional Recommendations: Ditches

- Encourage filling or integration into stormwater controls those ditches unnecessary for drainage.
- Smaller buffer widths should be afforded (>35')
 on shallow ditches (< 3 ft deep) to allow
 buffering of other features.
 - Buffers may be more efficient for nitrogen removal where ditches are many
 - Longer residence time in zones of denitrification
 - Higher Organic Matter content in soils

Acknowledgements

- Jenn Volk
- Lyle Jones
- Amy Jacobs
- Kent Price
- Scott Andres
- Robin Tyler
- Bill Ullman

Report to be available @ www.inlandbays.org

chrisbason@inlandbays.org for questions

Water Quality Buffer Regulations In & Around Delaware

	New Castle Co.	Kent Co.	Sussex Co.	New Jersery	Maryland Critical Areas	CIB Sufficient Buffer	CIB Optimum Buffer
Preserves	Existing native vegetation	Existing natural buffers	Nothing Specified	Existing vegetation	Existing natural vegetation	Existing native vegetation	Existing native vegetation
Width							
Tidal Wetlands & Waters	100 ft.	100 ft.	50 ft.	300 ft.	200 ft.	80-300 ft.	150-500 ft.
Nontidal Wetlands	50 ft.	0 ft.	0 ft.	0 – 150 ft.	25 ft.	50	100
Headwaters	100 ft.	50 ft.	0 ft.	300 ft.	100 ft.	80	150
Larger Waterways	100 ft.	100 ft.	0 – 50 ft.	300 ft.	100 ft.	80	150
Vegetation	Natural/ Forest	Natural /Forest (in TMDL basin)	Natural/ Forest	Existing Vegetation or Natural /Forest	Natural /Forest	Natural /Forest	Natural /Forest
Management Plan	No	No	No	Yes	Yes	Yes	Yes

Notes

- Adapted from Jen Volk, DNREC 2007
- New Jersey's special resource protection areas, Kent Co.'s TMDL basins, and Maryland's Critical Areas are comparable to the Inland Bays designation as water's of Ecological & Recreational Significance.
- Maryland and New Jersey's nontidal wetlands buffers are part of their wetlands laws.
- Kent Co. had proposed a more protective buffer system in 2007