

Soil Test P Summary for Delaware

Soil Phosphorus Saturation

Phosphorus Leaching in Delaware Soils

The Delaware Agricultural Landscape

Research Questions

- 1: How are vegetated filter strips (VFS) distributed through the Delaware Agricultural landscape?
- 2: Can a technique such as soil deep tillage prior to VFS installation improve phosphorus (P) retention with VFS installed in Delaware?
- 3: Can a matrix be developed to predict the proper placement of VFS within the agricultural landscape?

VFS in the Context of the Delaware Landscape

VFS in the Context of the Delaware Landscape

VFS in the Context of the Delaware Landscape

County	VFS	Cropland	M3-P
	ha	%	$\mathbf{Mg}\ \mathbf{kg}^{\text{-1}}$
New Castle	35	14	46
Kent	26 7	32	98
Sussex	99	54	176

Eight sites
for addressing
VFS soil P
sorption and
desorption

Crop and VFS Soil Sampling

Basic Properties of 8 VFS Sites

VFS	Soil Series	Width	Vegetation mixture	Time since installation at sampling
		m		yr
1	Rockawalkin loamy sand	33	Cool season	4
2	Mullica-Berryland complex	4	Cool season	3
3	Klej loamy sand	7	Warm season	2
4	Fallsington loam	37	Cool season	3
5	Mullica mucky sandy loam	29	Cool season	4
6	Downer sandy loam	18	Warm season	3
7	Fallsington loam	7	Cool season	3
8	Unicorn loam	18	Cool season	4

Laboratory Soil Analysis

- Routine analysis by DE-STL including pH, OM, M3-P, Al, Fe
 - Soil P saturation (PSR) was calculated from the molar ratio of M₃-P:(M₃-Al+Fe)
 - Soil P Storage Capacity (SPSC) was calculated as: (0.15 PSR)*(M3-Al+Fe)
- Water soluble phosphorus extraction (WSP)
- Batch equilibrium isotherm determination to calculate Langmuir parameters S_{max} and EPC_o
- Simulated deep tillage by mixing equal portions of soils from 0-15, 15-30, and 30-45 cm
 - **batch equilibrium isotherm**
 - **WSP**
 - Textural analysis

Average Field and VFS Soil Properties

Relating Environmental Soil P Measures

Linking Soil Solution P to P Saturation

Simulated deep tillage to 45 cm was successful at increasing **SPSC**

Soil P in Deep Tilled versus Disked Plots

- DT Plots were disk tilled prior to planting to prepare the soil surface
- C-DT plots were Chisel plowed to a depth of 35 cm, followed by disk tillage to prepare the soil surface

	\mathbf{D}'	f T	C-I	OT
depth	WSP	PSI	WSP	PSI
cm	m g	g kg ⁻¹ Field !	mg <u>9 VFS</u>	kg ⁻¹
0-15	6.9	189	6.3	134
15-30	3.3	225	3.5	207
30-45	0.9	361	1.3	217
		Field 1	lo VFS	
0-15	4.6	264	7.4	247
15-30	2.5	292	5.0	224
30-45	1.1	333	2.7	216

Tool to Maximize P retention by VFS				
port				
- 0.15				
Pasture in poor condition / conventional till row cover crop				

>6

Up gradient slope (%)	0-3	3-6
Characteristics influe	encing sub-surf	ace P transport

Characteristics influ	encing sub-surf	ace P transport

Depth to mean high water table	

table			
Depth of PSR>0.15 relative to mean high water table	> 1 m	0.2 – 1 m	Less than 0.2 m

VFS Width	Creall (40 rm)	Modium (oo m)	Laura (aa m)
Subsurface return period	Months	Weeks	Days

			3
VFS Width Recommendation	Small (10 m)	Medium (20 m)	Large (30 m)

Best and Worst Case Scenarios

	EXAMPLE 1	EXAMPLE 2			
Characteristics influencing surface P Transport					
Soil (0-5 cm) PSR	0.10	0.40			
Up gradient land use	Cover crop and no till	No cover crop and conventional till			
Up gradient slope (%)	0.5	5.0			
Characteristics influencing sub-surface P transport					
Depth to mean high water table	0.5	.1			
Depth of PSR>0.15 relative to mean high water table	•5	O			
Subsurface return period	Months	Days			
VFS Width Recommendation	(20+10+10+20+20+10) /6 = 15 Small	(30+30+20+30+30+3 0)/6 = 28 Large			

Conclusions

- Phosphorus saturated soils remain a risk of dissolved P loss after VFS installation
- * Simulated deep tillage has the potential to significantly reduced the risk of P loss, and increased soil P sorption capacity relative to surface soils prior to deep tillage
- Rapid soil tests (PSR and SPSC) can be used to determine whether VFS soil will be a source or a sink for P

Need for further research

The proposed evaluation matrix must be tested to determine if recommendations are adequate for managing phosphorus losses from agricultural fields with vegetated filter strips.