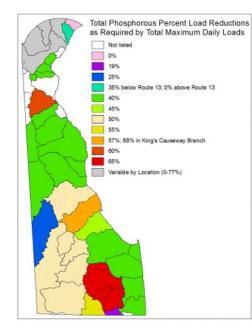
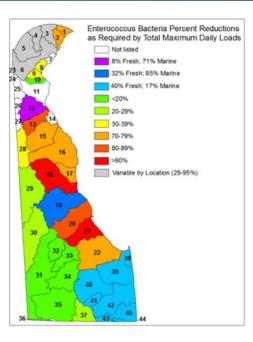

DDE De la vare Targeting And Planning Tool


#### Brittany Sturgis


Delaware Department of Natural Resources and Environmental Control (DNREC) Watershed Assessment and Management Section

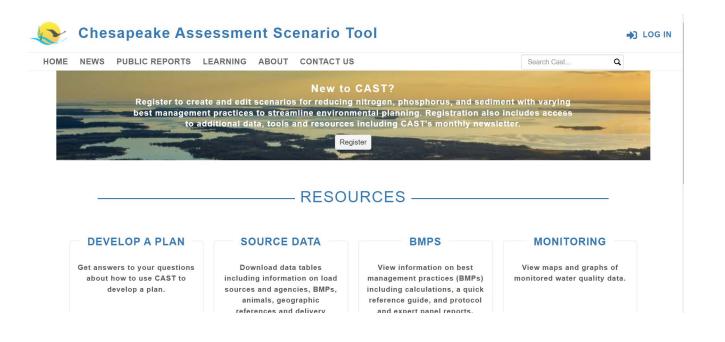


# DTAP History








► TMDLs!

# How can we accelerate water quality improvement?

- Understand background/baseline loads
- Model impacts of current BMPs
- Evaluate impacts of potential/future BMPs to get closer to TMDLs



# Started with CAST...



A web-based nitrogen, phosphorus and sediment load estimator tool where users specify a geographical area, and then select BMPs to develop plans to meet goals.

How do we want to customize to meet DE's needs?

What worked and what didn't?

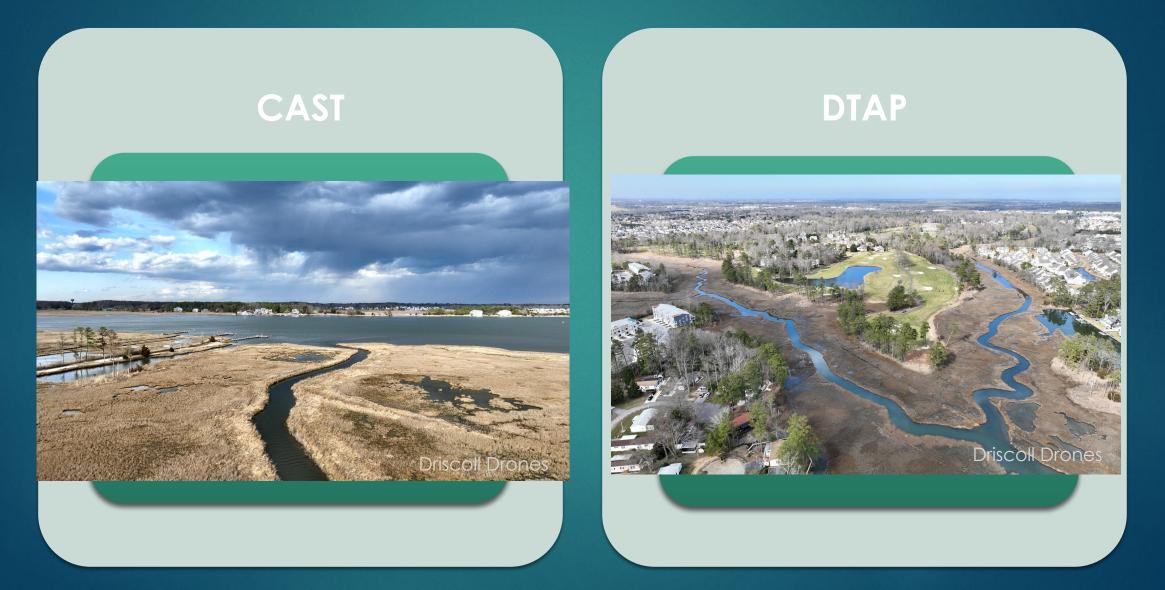
# **Delaware Targeting and Planning Tool**

# Goals of DTAP



A Delaware-specific tool that can help model background loads and identify BMPs to achieve water quality standards

DTAP is intended to be a modeling toolnot a regulatory tool.




Identify opportunities to reach load reduction goals for TMDLs, WIPs, PCSs, etc.


### Major differences between DTAP & CAST

- Evaluating impacts to local streams (TMDLs) vs. bay-wide
  - Edge of Stream = the load that reaches the edge of a small stream
  - Edge of Tide = the load that reaches the edge of the tidal portion of the Bay
  - DTAP is currently a water quality model and **not** a hydrodynamic model
- Modeling statewide and a various scales
- Modeling nitrogen, phosphorus, sediment AND bacteria
- Simplified/condensed list of BMPs

# 1. Edge of Tide vs. Edge of Stream



### How does DTAP work?





- Choose landuse/base conditions for years 1990-2025
- An average hydrological condition used for all years
- Geographic scales next slide

#### Developing the Land Use

Use the ArcGIS function union with the NHD and CAST modeling segments with the 1-m data for the 2013 year at NHD scale

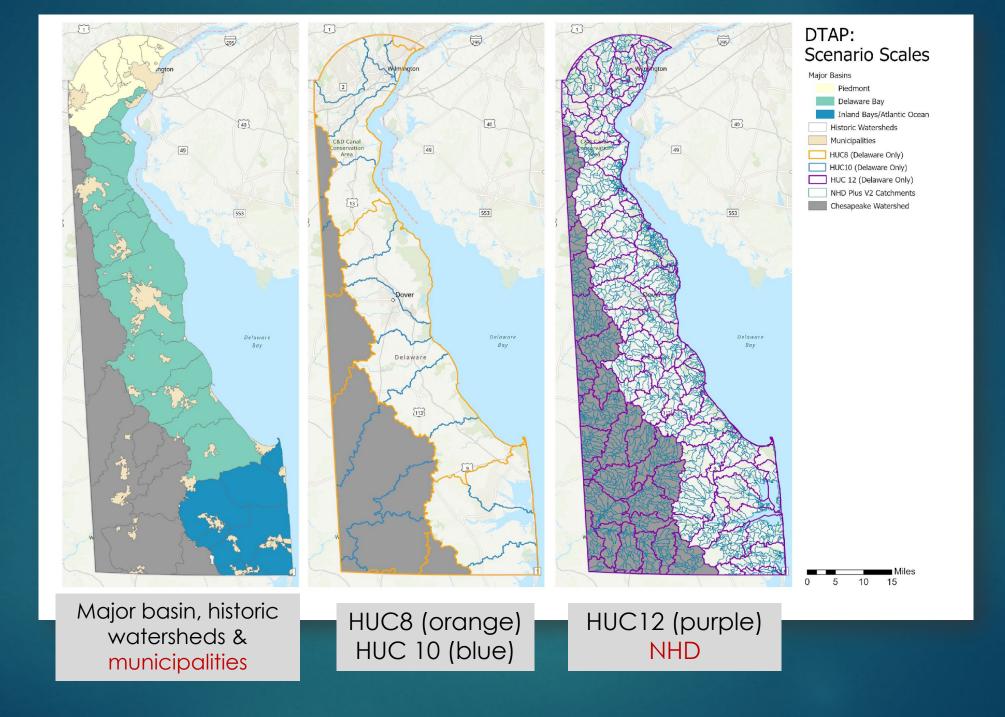
Align land uses to match between the 2013 1-m 13 categories and the NLCD categories by aggregating

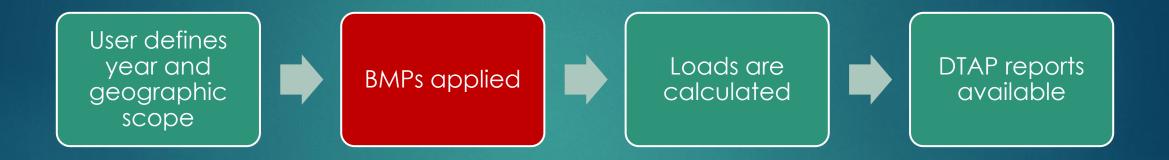
- Natural
- Urban
- Agriculture
- Other

Calculate change between NLCD years 2001, 2006, 2011, and 2016 for each of the four classes and each NHD catchment

Calculate the proportion of each 2013 1-m class within each of the four NLCD simplified classes for all years and NHD • Each of the four categories can change over time

 The proportion of the land uses within those four land use categories does not change over time and stays true to the 2013 1-m data


Calculate the proportion of each 2013 1-m land use class within each of the four NLCD simplified classes.


Apportion changes to the areas from the four classes to the 2013 1-m land classes using the proportion calculated

Linearly interpolate between the 2013 and 2025 land use for all land classes

2/16/2022

Olivia Devereux's CIB STAC presentation 2/16/2022





#### **DTAP BMPs**

| Sector      | BMP Type        | BMP                                        |
|-------------|-----------------|--------------------------------------------|
| Agriculture | Efficiency      | Ag Erosion & Sediment Control              |
| Agriculture | Efficiency      | Ammonia Emissions Reduction                |
| Agriculture | Efficiency      | Conservation Plans                         |
| Agriculture | Efficiency      | Cover Crop                                 |
| Agriculture | Efficiency      | Ditch Controls                             |
| Agriculture | Efficiency      | Nutrient Management                        |
| Agriculture | Efficiency      | Pasture Management                         |
| Agriculture | Efficiency      | Streambank Fencing                         |
| Agriculture | Efficiency      | Tillage Management                         |
| Agriculture | Landuse Change  | Forest Buffer                              |
| Agriculture | Landuse Change  | Grass Buffer                               |
| Agriculture | Landuse Change  | Land Retirement                            |
| Agriculture | Landuse Change  | Tree Planting                              |
| Agriculture | Landuse Change  | Wetland Creation/Restoration               |
| Agriculture | Pound Reduction | Manure Transport                           |
| Agriculture | Pound Reduction | Waste Management System                    |
| Developed   | Efficiency      | Erosion and Sediment Control- Level 2      |
| Developed   | Efficiency      | Pet Waste Education                        |
| Developed   | Efficiency      | Runoff Reduction                           |
| Developed   | Efficiency      | Stormwater Treatment                       |
| Developed   | Landuse Change  | Impervious surface elimination to pervious |
|             |                 | surface                                    |
| Natural     | Pound Reduction | Shoreline Erosion Control                  |
| Natural     | Pound Reduction | Stream Restoration                         |
| Septic      | Efficiency      | Septic Denitrifcation and Pumping          |
| Septic      | Pound Reduction | Septic Connection                          |
| Septic      | Pound Reduction | Sliplines                                  |

Forest Buffer: Forest buffers are linear wooded areas that help filter nutrients, sediments and other pollutants from runoff as well as remove nutrients from groundwater. The recommended buffer width is 100 feet, with a 35 feet minimum width required.

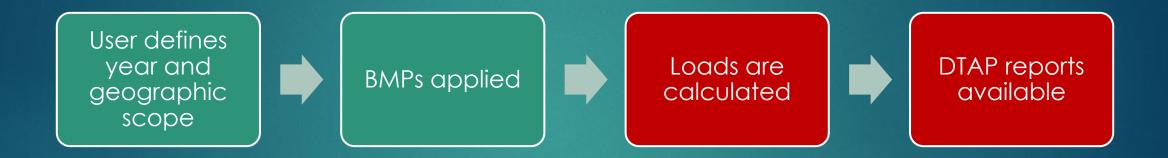
Synonymous BMPs: Tree/Shrub Establishment, Windbreak/Shelterbelt Establishment, Urban Forest Buffer, Urban Forest Planting, Riparian Forest Buffer, CREP Hardwood Tree Planting (CP3A), Riparian Forest Buffer (NRCS 391), Riparian Buffer (FSA CP22), CREP Riparian Forest Buffer, Riparian Forest Buffer, Woodland Buffer Filter Area

| BMP Efficiency Rates: | BMP Name                                        | Nitrogen       | Phosphorus        | Sediment   | Impacts<br>bacteria? |
|-----------------------|-------------------------------------------------|----------------|-------------------|------------|----------------------|
|                       | Forest Buffer efficiencies differ dependir      | ng upon land ( | use where it's im | plemented: |                      |
|                       | Ag open land                                    | 0.65           | 0.42              | 0.56       | No                   |
|                       | Commercial                                      | 0.25           | 0.5               | 0.5        | No                   |
|                       | Construction                                    | 0.25           | 0.5               | 0.5        | No                   |
|                       | Cultivated Crops, pasture/hay & production area | 0.65           | 0.42              | 0.56       | No                   |
|                       | Highway                                         | 0.25           | 0.5               | 0.5        | No                   |
|                       | Multi & Single Family Residential               | 0.25           | 0.5               | 0.5        | No                   |
|                       | Open Space                                      | 0              | 0                 | 0          | No                   |

Grass Buffer: Grass buffers are linear strips of grass or other non-woody vegetation maintained to help filter nutrients, sediment and other pollutants from runoff. The recommended buffer width for buffers is 100 feet, with a 35 feet minimum width required. Vegetated open channels are modeled identically to grass buffers.

Synonymous BMPs: Grassed waterway, filter strip, field buffer, Riparian Herbaceous Cover (NRCS 390), Filter Strip (NRCS 393), Filter Strip (FSA CP21), Field Border (NRCS 386), Grass Waterway (NRCS 412), <u>Noneasement</u> (FSA CP8A), Vegetated Filter, Vegetative Buffer Strip, Vegetated Open Channel

| BMP Efficiency Rates: | BMP Name     | Nitrogen | Phosphorus | Sediment | Impacts bacteria? |
|-----------------------|--------------|----------|------------|----------|-------------------|
|                       | Grass Buffer | 0.46     | 0.42       | 0.56     | No                |


#### DTAP BMP guide currently being developed to help users select correct BMP

BMPs can be entered into DTAP manually or by using statewide BMP data.

Statewide BMP data are available for use in DTAP. Data are from DNREC's BMP Tracking & Reporting Tool, but there are still major gaps in statewide data in the tool.



### Models are only as good as the data put into them!



### **Report Type**

Scenario Loads Report

Scenario Loads Comparison

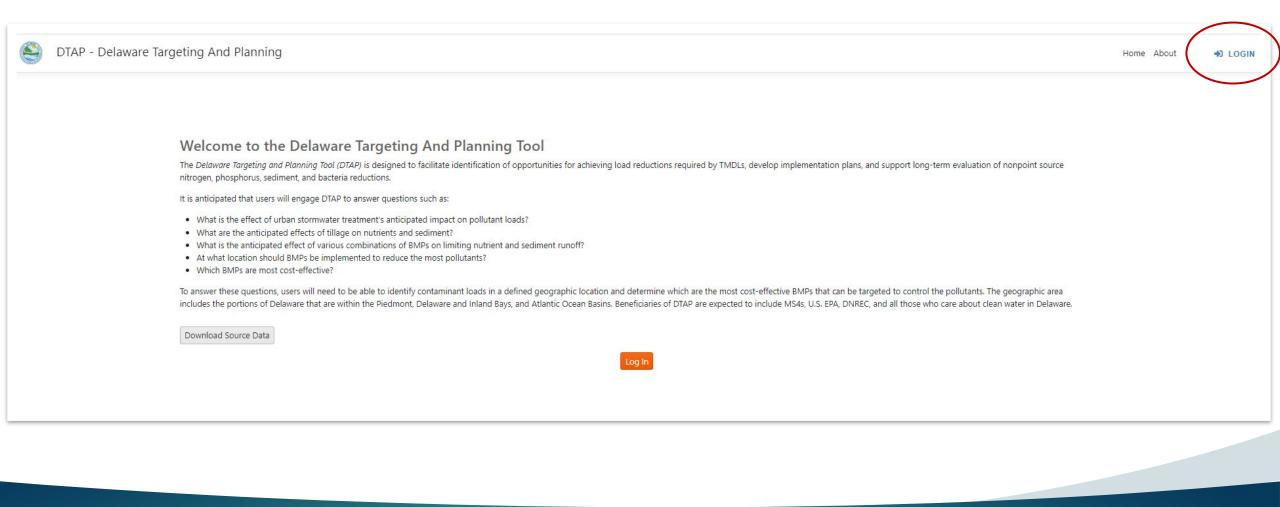
Scenario Land Use

Land Use Comparison

**BMP Summary Report** 

BMP Input File

BMP – Submitted vs. Credited

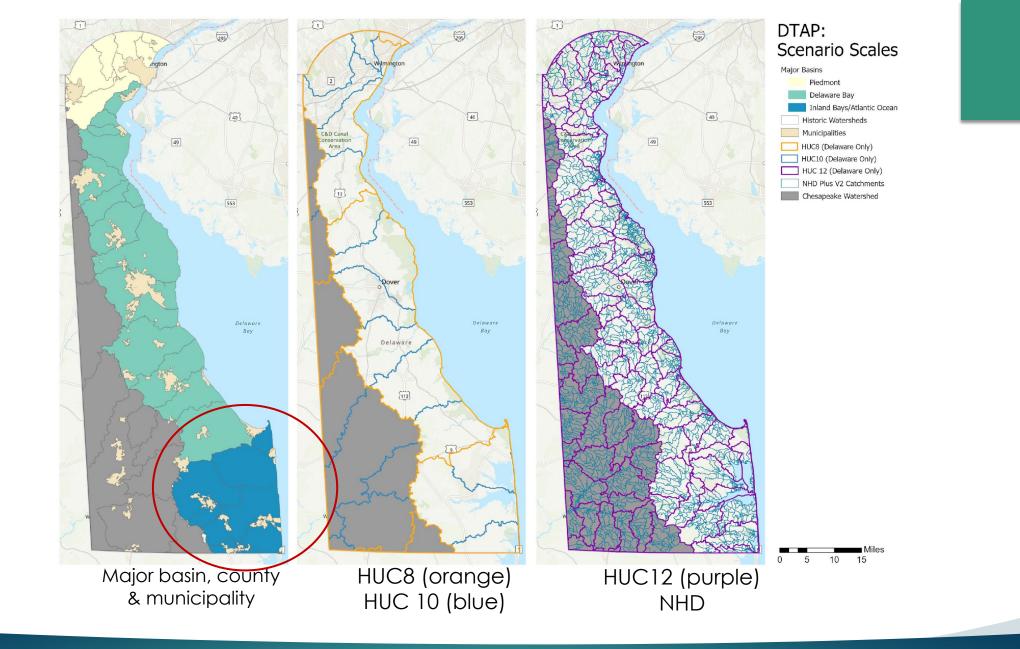

### Project Example

Driscoll Drones

What would be the impact of converting 500 acres of crops to forest buffers in the Inland Bays Basin in 2022?

#### All users will need a valid login

#### (managed by DTAP team in DNREC)

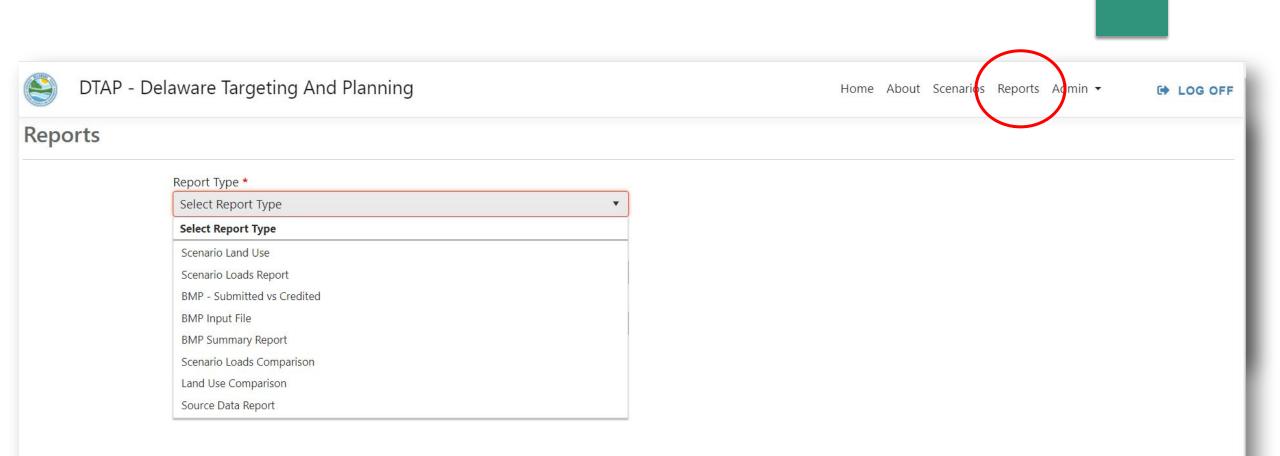





#### DTAP - Delaware Targeting And Planning

| d Scenario                                                                 |                                                                                      |                                           |                             |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|
| nario                                                                      |                                                                                      |                                           |                             |
| ave Save & Close Copy Sce                                                  | nario Without BMPs Back To List                                                      |                                           |                             |
|                                                                            |                                                                                      |                                           |                             |
| Scenario Name *                                                            | Cost Profile                                                                         | Base Condition *                          |                             |
| NPSmtg-InlandBays                                                          | Select Cost Profile                                                                  | ▼ 2022 ▼ Ac                               | dd to My Scenario List: 🗹 😨 |
| nly letters, numbers, dash, colon, space a                                 | ind underscore.                                                                      |                                           |                             |
| cenario Description *                                                      |                                                                                      |                                           |                             |
| Creating a test scenario for the NPS scale of major basin: Inland Bays, an | meeting. Scenario includes 500 acres of forest buf<br>d base condition year of 2022. | r, geographic 🛛 Is BaseLine Scenario: 🗹 🍞 |                             |
| Geographic Scale *                                                         |                                                                                      | 12                                        |                             |
| MajorBasin                                                                 | •                                                                                    |                                           |                             |
| Search geographies                                                         |                                                                                      |                                           |                             |
| Chesapeake Bay                                                             |                                                                                      | Inland Bays/Atlantic Ocean                |                             |
| Delaware Bay                                                               |                                                                                      | 4                                         |                             |
| Piedmont                                                                   |                                                                                      |                                           |                             |
|                                                                            |                                                                                      | bb bb                                     |                             |

Step 1 – Create scenarios & base conditions. Define base condition year and geographic scale.




| DTAP - Delaware Targeting And Planni                                                                                      | Add Bmp >                                                                                                                                           | × | ie Abou  | t Scenario | os Rep | orts A | dmin 👻 | 8 |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|------------|--------|--------|--------|---|
| Edit Scenario - NPSmtg-InlandBays -   Scenario   BMPs   Hanure     + Add BMP   Clear Filters   Unique ID +   Y   BMP Type | Unique Identifier *   NPSmtgforestbuffers   Geographic Scale *   MajorBasin   Geography *   Inland Bays/Atlantic Ocean   BMP Type *   Forest Buffer |   | ▼ Relate |            | mount  |        | Unit   | Y |
|                                                                                                                           | Landuse *<br>Cultivated Crops  Amount * Unit * Solono Save Cancel                                                                                   |   |          |            |        |        |        |   |

- Manually enter BMPs through user interface
  - Use Excel template to upload

Step 2 – Add BMPs

• Import all BMPs from DE BMP Tracker for a particular year



#### **Step 3** – Run model with "reports"

| Pr | A B<br>eYear GeographyFullName  | C           | D<br>LanduseName             | E<br>NPSmta-InlandBaya Acros | NPSmtg-InlandBaye - PMPredded Asso    | s NPSmtg-InlandBays - BMPsadded Acres Diff  |
|----|---------------------------------|-------------|------------------------------|------------------------------|---------------------------------------|---------------------------------------------|
|    | erear GeographyrullName         | Sectorivame | Landuseivame                 | NFSmtg-Inlandbays Acres      | NFSmtg-Inlandbays - bivirsadded Acres | s NFSmtg-Inlandbays - bivirsadded Acres Dim |
| 2  | 2022 Inland Bays/Atlantic Ocean | Agriculture | Agricultural Open Land       | 0.00                         | 0.0                                   | 0.00                                        |
| 3  | 2022 Inland Bays/Atlantic Ocean | Agriculture | Cultivated Crops             | 50,049.40                    | 49,549.4                              |                                             |
| 4  | 2022 Inland Bays/Atlantic Ocean | Agriculture | Pasture/Hay                  | 2,830.76                     |                                       |                                             |
| 5  | 2022 Inland Bays/Atlantic Ocean | Agriculture | Production Area              | 179.03                       | 179.0                                 |                                             |
| 5  | 2022 Inland Bays/Atlantic Ocean | Developed   | Commercial                   | 13,940.00                    | 13,940.0                              |                                             |
| 7  | 2022 Inland Bays/Atlantic Ocean | Developed   | Construction                 | 2,173.18                     | 2,173.1                               |                                             |
| 8  | 2022 Inland Bays/Atlantic Ocean | Developed   | Highway                      | 5,606.56                     |                                       |                                             |
| 9  | 2022 Inland Bays/Atlantic Ocean | Developed   | Multi-Family<br>Residential  | 7,870.25                     | 7,870.2                               |                                             |
| 0  | 2022 Inland Bays/Atlantic Ocean | Developed   | Single Family<br>Residential | 30,226.30                    | 30,226.3                              | 0.00                                        |
| 1  | 2022 Inland Bays/Atlantic Ocean | Natural     | Forest                       | 48,617.40                    | 49,117.4                              | 500.00                                      |
| 2  | 2022 Inland Bays/Atlantic Ocean | Natural     | Harvested Forest             | 740.37                       | 740.3                                 |                                             |
| .3 | 2022 Inland Bays/Atlantic Ocean | Natural     | Open Space                   | 11,490.80                    | 11,490.7                              |                                             |
| 4  | 2022 Inland Bays/Atlantic Ocean | Natural     | Water                        | 9,134.14                     | 9,134.14                              |                                             |
| 5  | 2022 Inland Bays/Atlantic Ocean | Natural     | Wetland                      | 22,539.20                    | 22,539.20                             | 0.00                                        |
| 6  | 2022 Inland Bays/Atlantic Ocean | Septic      | Septic                       | 0.00                         | 0.0                                   |                                             |
| 7  |                                 |             |                              |                              |                                       |                                             |
| 8  |                                 |             |                              |                              |                                       |                                             |
| 9  |                                 |             |                              |                              |                                       |                                             |
| 0  |                                 |             |                              |                              |                                       |                                             |
| 1  |                                 | ]           |                              |                              |                                       |                                             |
| 2  |                                 |             |                              |                              |                                       |                                             |
| .3 |                                 |             |                              |                              |                                       |                                             |
| 4  |                                 |             |                              |                              |                                       |                                             |
| 5  |                                 |             |                              |                              |                                       |                                             |
| .6 |                                 |             |                              |                              |                                       |                                             |
| 7  |                                 |             |                              |                              |                                       |                                             |
| 8  |                                 |             |                              |                              |                                       |                                             |
| 9  |                                 |             |                              |                              |                                       |                                             |
| 0  |                                 |             |                              |                              |                                       |                                             |
| 1  |                                 |             |                              |                              |                                       |                                             |
| 2  |                                 |             |                              |                              |                                       |                                             |
| 3  |                                 |             |                              |                              |                                       |                                             |

First double check the acres – looks good!

| 2022 All | All                | All                    | 5,731,633.8            |          |              | 5,672,001.8         |             | -59,632.0                 |                            |                                           |                              |
|----------|--------------------|------------------------|------------------------|----------|--------------|---------------------|-------------|---------------------------|----------------------------|-------------------------------------------|------------------------------|
|          |                    |                        |                        |          |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        |          |              |                     |             |                           | -                          |                                           |                              |
|          |                    |                        |                        |          |              |                     |             |                           | -                          |                                           |                              |
|          |                    |                        |                        |          | A            | В                   | С           | D                         | E                          | F                                         | G                            |
|          |                    |                        |                        | Bas      | seYear Geogr | aphyFullName        | SectorNam   | e LanduseName             | NPSmtg-InlandBays TnLbs NP | Smtg-InlandBays - BMPsadded TnLbs NPSmtg- | InlandBays - BMPsadded TnLbs |
|          |                    |                        |                        | 2        | 2022 Inland  | Bays/Atlantic Ocean | Agriculture | Agricultural Open Land    | 0.0                        | 0.0                                       |                              |
|          |                    |                        |                        | 3        |              | Bays/Atlantic Ocean | Agriculture |                           | 3,289,580.0                | 3,228,660.0                               | -60,                         |
|          |                    |                        |                        | 4        |              | Bays/Atlantic Ocean | Agriculture | Pasture/Hay               | 68,862.9                   | 68,862.9                                  | ,                            |
|          |                    |                        |                        | 5        |              | Bays/Atlantic Ocean | Agriculture | Production Area           | 526,383.0                  | 526,383.0                                 |                              |
|          |                    |                        |                        | 6        |              | Bays/Atlantic Ocean | Developed   | Commercial                | 354,426.0                  | 354,426.0                                 |                              |
|          |                    |                        | [                      | 7        |              | Bays/Atlantic Ocean | Developed   | Construction              | 88,226.0                   | 88,226.0                                  |                              |
|          |                    |                        |                        | 8        |              | Bays/Atlantic Ocean | Developed   | Highway                   | 175,774.0                  | 175,774.0                                 |                              |
|          |                    |                        |                        | 9        |              | Bays/Atlantic Ocean | Developed   | Multi-Family Residential  | 102,995.0                  | 102,995.0                                 |                              |
|          |                    |                        |                        | 10       |              | Bays/Atlantic Ocean | Developed   | Single Family Residential | 508,416.0                  | 508,416.0                                 |                              |
|          |                    |                        |                        | 11       |              | Bays/Atlantic Ocean | Natural     | Forest                    | 114,306.0                  | 115,594.0                                 | 1,                           |
|          |                    |                        |                        | 12       |              | Bays/Atlantic Ocean | Natural     | Harvested Forest          | 18,799.6                   | 18,799.6                                  |                              |
|          |                    |                        |                        | 13       |              | Bays/Atlantic Ocean | Natural     | Open Space                | 37,951.4                   | 37,951.4                                  |                              |
|          |                    |                        |                        | 14       |              | Bays/Atlantic Ocean | Natural     | Water                     | 94,799.1                   | 94,799.1                                  |                              |
|          |                    |                        |                        | 15       |              | Bays/Atlantic Ocean | Natural     | Wetland                   | 41,309.8                   | 41,309.8                                  |                              |
|          |                    |                        |                        | 16       | 2022 Inland  | Bays/Atlantic Ocean | Septic      | Septic                    | 309,805.0                  | 309,805.0                                 |                              |
|          |                    |                        |                        | 17       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 18       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 19       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 20       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 21       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 22       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 23       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 24       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 25       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 26       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 27       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 28       |              |                     |             |                           |                            |                                           |                              |
| 1        |                    |                        |                        | 29       |              |                     |             |                           |                            |                                           |                              |
| Read Me  | Scenario Loads-Acr | es-Summary Scenario Lo | ads-TN-Summary Scenari | 10 L 30  |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 31       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 32       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 33       |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 34<br>35 |              |                     |             |                           |                            |                                           |                              |
|          |                    |                        |                        | 25       |              |                     |             |                           |                            |                                           |                              |

Let's look at nitrogen loads

# Results

What would be the impact of converting 500 acres of crops to forest buffers in the Inland Bays Basin in 2022?

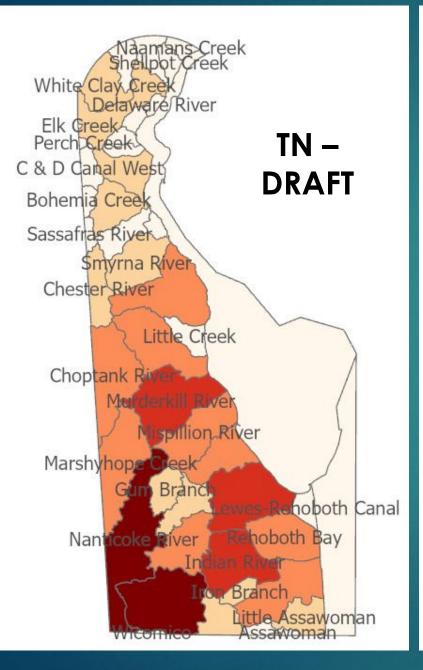
| Pollutant           | Scenario <b>A</b>         |
|---------------------|---------------------------|
| Nitrogen (lbs/yr)   | -59,632                   |
| Phosphorus (lbs/yr) | -474                      |
| Sediment (lbs/yr)   | -444,796                  |
| Bactera (MPN)       | * Still in<br>development |

# Other ways to utilize DTAP

- Quantify cumulative impacts of BMP implementation
- Look at trends towards meeting TMDLs (WIPs, PCSs, etc.)
- Pollutant hot spot analyses
- Analyze land use change

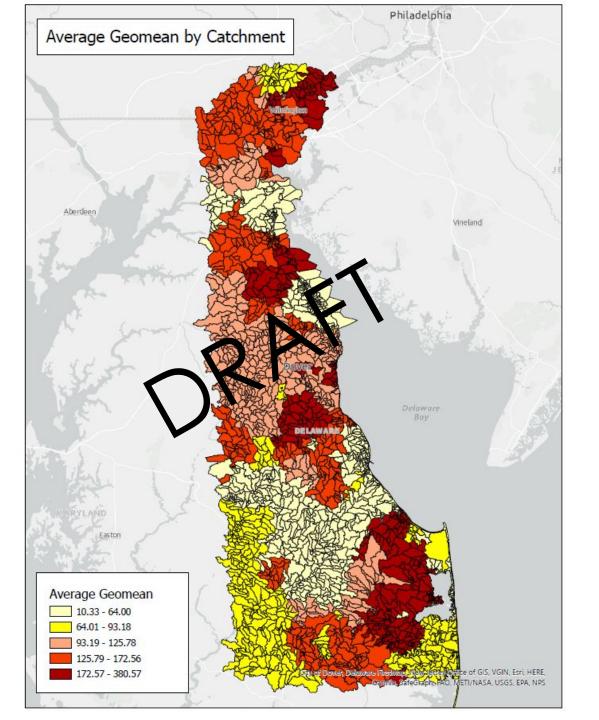
Opportunities are endless!

#### Inland Bays Basin


|                           | 1990<br>acres | 2000<br>acres | 2010<br>acres | 2020<br>acres |
|---------------------------|---------------|---------------|---------------|---------------|
| Agriculture               | 63,241        | 62,925        | 58,432        | 54,095        |
| Agricultural Open Land    | 24            | 0             | 0             | 0             |
| Cultivated Crops          | 58,867        | 58,814        | 55,026        | 51,015        |
| Pasture/Hay               | 4,130         | 3,891         | 3,229         | 2,904         |
| Production Area           | 221           | 220           | 177           | 176           |
| Developed                 | 42,994        | 45,127        | 52,058        | 58,362        |
| Commercial                | 10,658        | 11,243        | 13,016        | 13,769        |
| Construction              | 25            | 36            | 548           | 1,964         |
| Highway                   | 4,342         | 4,550         | 5,200         | 5,528         |
| Multi-Family Residential  | 5,994         | 6,407         | 7,424         | 7,788         |
| Single Family Residential | 21,975        | 22,890        | 25,870        | 29,313        |
| Natural                   | 99,163        | 97,346        | 94,907        | 92,940        |
| Forest                    | 53,376        | 51,879        | 50,490        | 48,965        |
| Harvested Forest          | 813           | 790           | 769           | 746           |
| Open Space                | 11,643        | 11,777        | 11,464        | 11,475        |
| Water                     | 9,973         | 9,802         | 9,264         | 9,146         |
| Wetland                   | 23,358        | 23,098        | 22,921        | 22,608        |
| Grand Total               | 205,397       | 205,397       | 205,398       | 205,398       |

### DRAFT – for discussion purposes only


### Example:


Land use change(acres) throughout the decades

\* No BMPs included in this analysis\*









### Bacteria -

much more complicated than we anticipated!



### Next steps

Testing of PHASE 1 has begun
 Looking for and working out bugs

PHASE 2

- Create an optimization tool that identifies optimal BMPs to improve water quality in a cost-effective manner
- Development just began and current contract extends to 2025



# Questions?

### Brittany Sturgis DNREC

Watershed Assessment and Management Section Brittany.Sturgis@delaware.gov

\*Thank you to Driscoll Drones for allowing me to use their pictures