Ribbed mussel habitat restoration for water quality benefits

Joshua Moody, PhD

Restoration Programs Manager, Partnership for the Delaware Estuary

Delaware Center for Inland Bays STAC Meeting

July 27, 2018 Rehoboth Beach, DE

Bivalves of the Delaware Estuary

Delaware River Basin



Nature's Benefits	Oysters	Marsh Mussels	FW Mussels			
Millennium Ecosystem Assessment Categories Specific Services/Values		Relative Importance Scores				
Provisioning: Food & Fiber	Dockside Product			~		
Deculation	Shoreline & Bottom Protection	11				
Regulating	Shoreline Stabilization	~~	111			
	Structural Habitat		11			
	Biodiversity: Imperiled Species			111		
Supporting	Bio-filtration		111			
	Biogeochemistry	11	11			
	Prey	~		~		
	Waterman Lifestyle, Ecotourism					
Cultural/ Spiritual/	Native American	11		111		
Historical/ Human Well Being	Watershed Indicator	***				
	Bio-Assessment	111	11	111		

Ribbed Mussels: Functionally Dominant Bivalve of Eastern US Salt Marshes

Relevant Literature: Kuenzler 1961; Lent 1969; Jordan and Valiela 1982; Bertness 1984

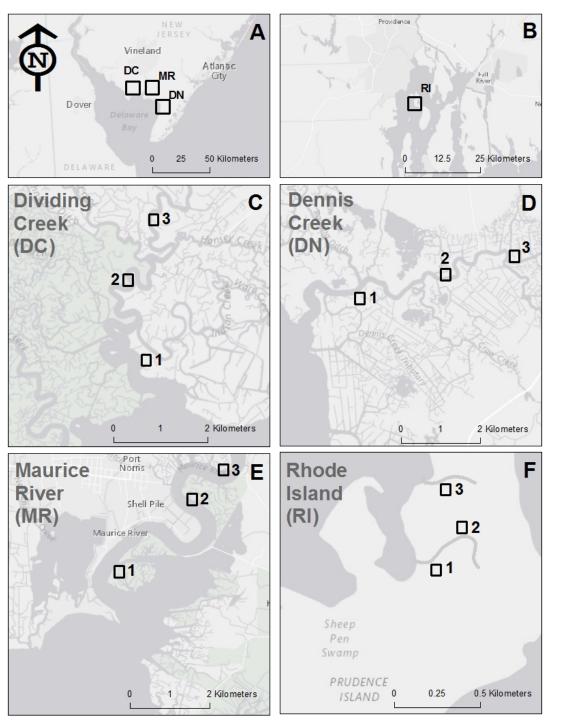
Ribbed Mussels Live Across the Salt Marsh Landscape

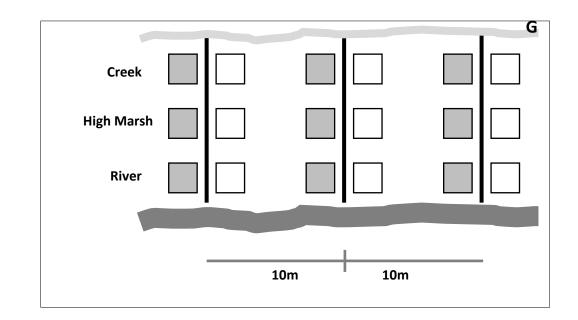
Source: Earl, Digital@loire, @eoEye, Leuired, USDA, USOS, AEX, @etmapping, Aerogrid, 198, 197, swiestopo, and the SIS User Community

Research Questions: RARE Grant EPA ORD

- 1. Where are our current services located?
- 2. Are they maximized?
- 3. If not, can they be enhanced, and how?

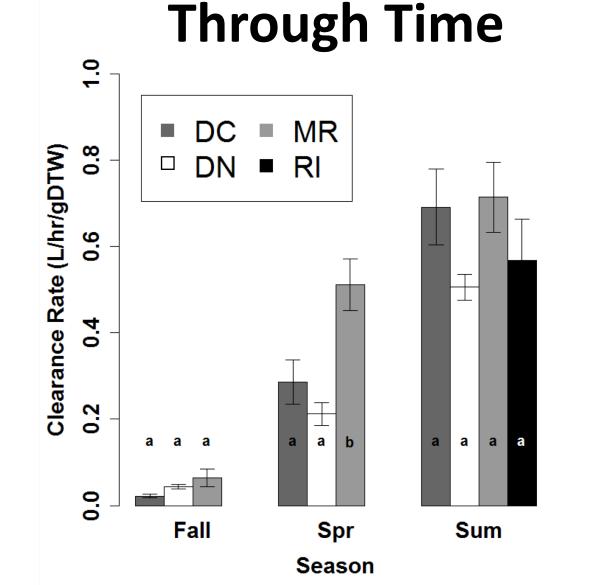
Task 1: Seasonal Physiological Experiments

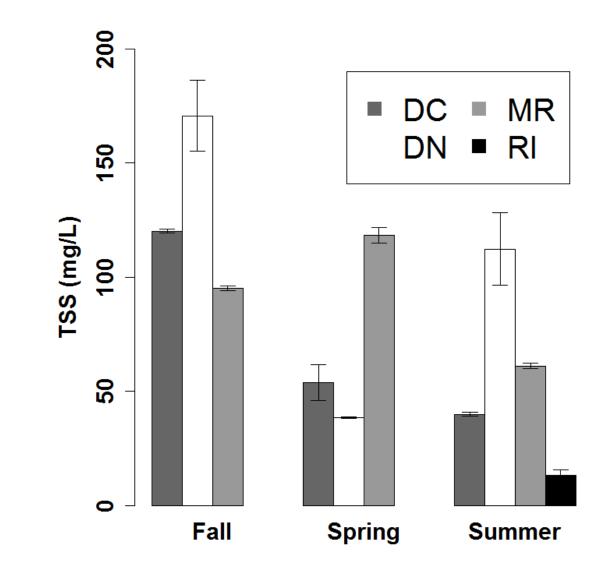

Rate Function on Natural Seston Diets


- 1. <u>Clearance Rate (I hr⁻¹ gDTW⁻¹):</u>
- 2. <u>Concentration of TSS or PN (mg l⁻¹)</u>:
- 3. <u>Filtration Rate TSS or PN (mg hr⁻¹ gDTW⁻¹)</u>
 - Fall: 7.2-8.2°C (6-10°C)
 - Spring: 14.6-16.2°C (14-18°C)
 - Summer: 20.5-25.6°C (>20°C)
 - RI Summer Only

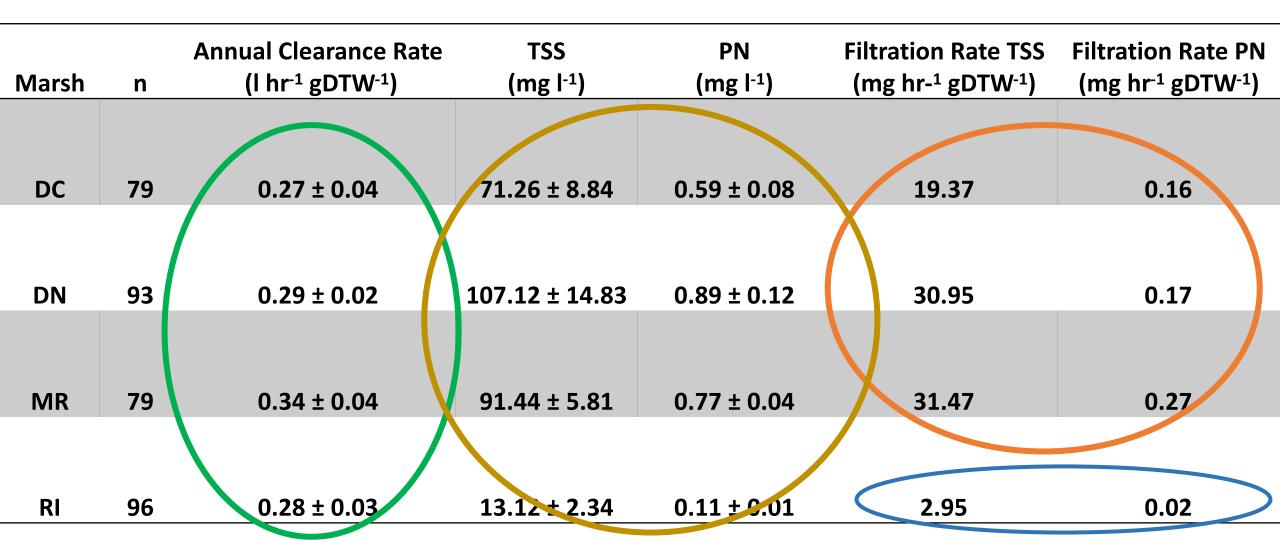
Regional Applied Research Effort (RARE) 2012-2014

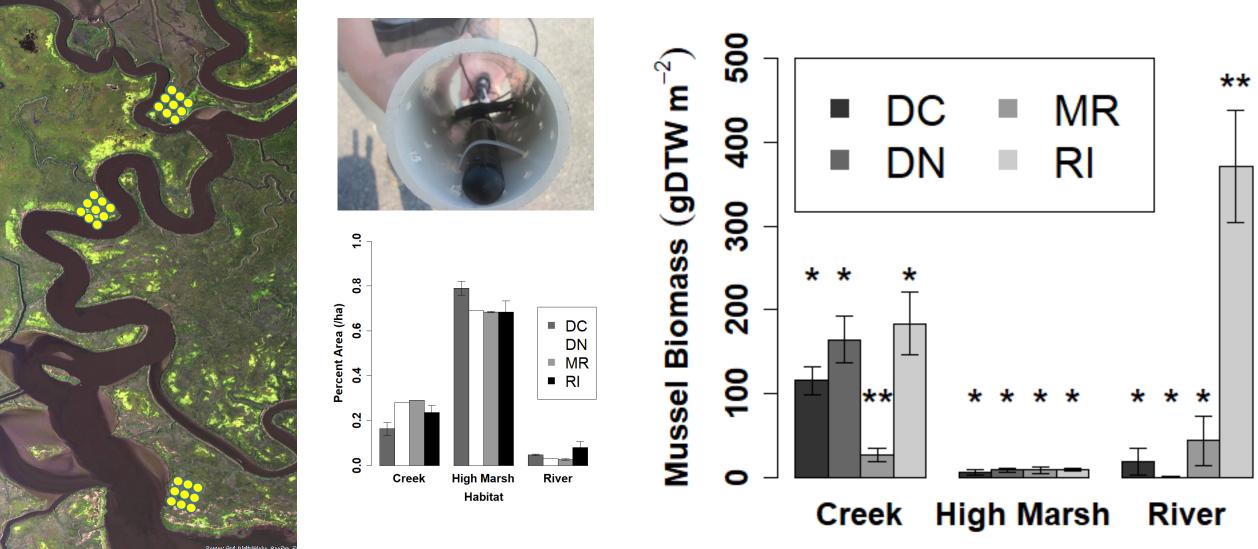
TITLE: Importance of Ribbed Mussels for Salt Marsh Climate Adaptation and Water Quality Management in Atlantic Estuaries **REGIONAL CONTACT:**Irene Purdy, Kathleen Drake (Division of Environmental Planning and Protection)(DEPP), Region 2 **ORD INVESTIGATOR:** Suzanne Ayvazian, Elizabeth Watson, Atlantic Ecology Division (AED)




Task 2: Marsh-Specific Data

- 1. Ribbed Mussel Biomass Across Habitats
- 2. Relative Percent Habitat Area
- 3. Inundation Times
- 4. Local Erosion Rates
- 5. Existing Living Shoreline Recruitment Data


Ribbed Mussel Water Processing was Consistent Across Space (Habitats and Marshes) but Differed


Seston was Variable Across Space and Time

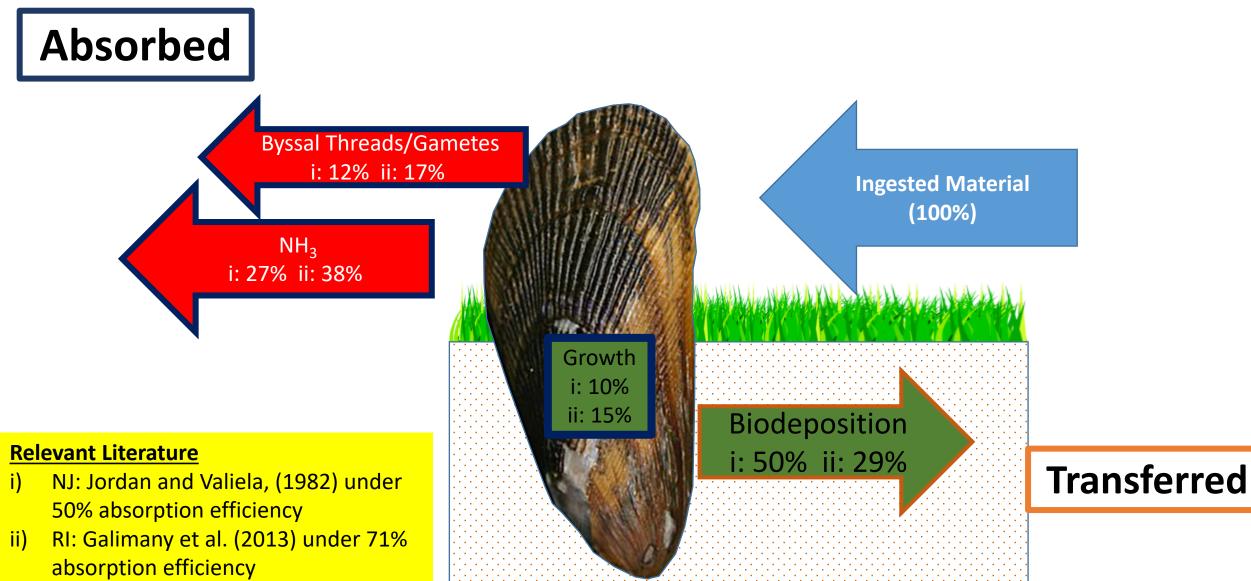
Annual Filtration Rates Dependent on Water Processing and Food Availability

Assess Habitat and Marsh-Specific Parameters

Mussel Biomass: non-normal but similar distributions; used Kruskal Wallis and Dunn post-hoc test (can accommodate unbalanced design)

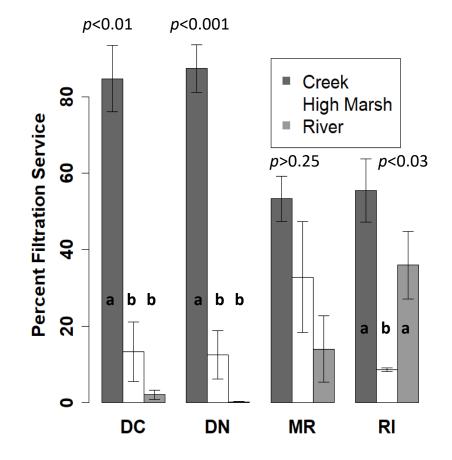
Integrate Spatial and Filtration Rate Data

$$\begin{aligned} & Gross \, Habitat \, Specific \, Filtration \, Rate \, per \, Site \left(\frac{kg}{yr \, ha}\right) = \\ & Average \, Marsh \, Gross \, Filtration \, Rate \, \left(\frac{mg}{hr \, gDTW}\right) * \, Immersion \, Time \, \left(\frac{hr}{day}\right) * \, Mussel \, Biomass \, \left(\frac{gDTW}{m^2}\right) \\ & * \, Percent \, Habitat \, Area * Scaling \, Factor(\frac{kg \, m^2 day}{mg \, ha \, yr}) \end{aligned}$$


				Filtration Rate PN	Immersion	Biomass		Habitat-Specific Filtration Rate TSS	
Marsh	Site	Habitat	mg hr ⁻¹ gDTW ⁻¹	mg hr ^{_1} gDTW ⁻¹	hr day⁻¹	gDTW m⁻²	% Habitat Area	kg yr⁻¹ ha⁻¹	kg yr⁻¹ ha⁻¹
DC	1	Creek	19.37	0.16	9.93	71.11	0.22	10,981.71	91.68
DC	2	Creek	19.37	0.16	10.63	86.58	0.14	9,109.19	76.04
DC	3	Creek	19.37	0.16	10.84	190.62	0.13	18,991.21	158.54
DC	1	High Marsh	19.37	0.16	7.59	0.02	0.73	7.84	0.07
DC	2	High Marsh	19.37	0.16	9.59	3.50	0.81	1,922.19	16.05
DC	3	High Marsh	19.37	0.16	10.82	16.59	0.83	10,528.20	87.89
DC	1	River	19.37	0.16	11.38	4.58	0.05	184.27	1.54
DC	2	River	19.37	0.16	13.44	0.70	0.05	33.26	0.28
DC	3	River	19.37	0.16	11.23	52.97	0.04	1,681.64	14.04

Marsh-wide Gross Filtration Rate

Marsh	Gross Filtration Rate-TSS (kg ha ⁻¹ yr ⁻¹)	Gross Filtration Rate-PN (kg ha ⁻¹ yr ⁻¹)
DC	17, 813 ± 6,694	148.71 ± 55.88
DN	33, 359 ± 5,638	277.44 ± 46.89
MR	13,538 ± 6,954	114.14 ± 58.63
RI	11, 504 ± 2,640	92.80 ± 21.30

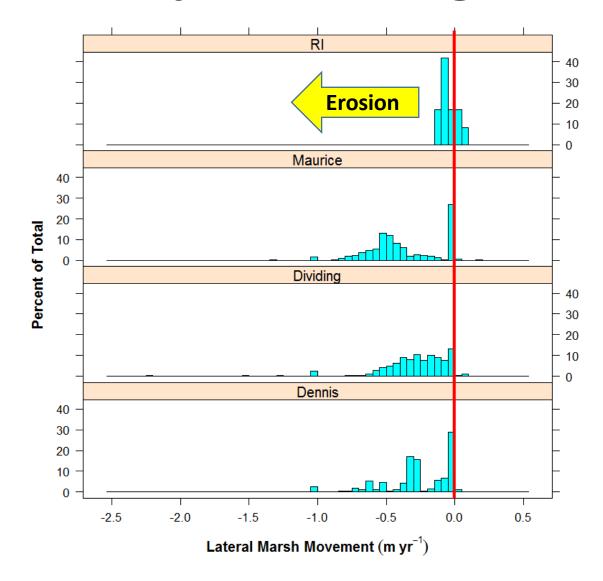

But what does this mean for ecosystem service provisioning?

Ribbed Mussel Mediated Ecosystem Services: Net Particulate Nitrogen Removal

NJ: Services Concentrated in Creeks RI: Services Concentrated in Creeks and Rivers

Marsh	Estimated Net PN Removal (kg ha ⁻¹ yr ⁻¹)						
	Total	Biodeposit	Growth				
DC	89.22 ± 33.53	74.35 ± 27.94	14.87 ± 5.59				
DN	166.46 ± 28.13	138.72 ± 23.45	27.74 ± 4.69				
MR	68.49 ± 35.18	57.07 ± 29.32	11.41 ± 5.86				
RI	39.90 ± 9.16	26.91 ± 6.18	12.99 ± 2.98				

Ribbed Mussel Filtration Services were Vastly Underrepresented along NJ River Habitat


				Gross Annual TSS	Net Annual PN		
Habitat	Region	Percent Area (ha⁻¹)	Mussel Biomass (g DTW m ⁻²)	Removal (Kg ha⁻¹ yr⁻¹)	Removal (Kg ha ⁻¹ yr ⁻¹)	Percent of Services (Regional Habitat ⁻¹)	
High Marsh	NJ	72.11±0.02*	8.56±1.91*	4,823±1,489	24.21±14.82	22%	
	RI	68.33±0.05*	9.60±1.94*	339±73	1.18±0.26	3%	
Creek	NJ	24.44±0.02*	102.99±13.44*	16,040±3,740	80.28±19.90	74%	
Creek	RI	23.67±0.03*	183.87±37.00**	7,901±1,843	27.40±16.40	69%	
River	NJ	0.03±0.01*	21.63±11.10*	705±485	3.56±3.33	3%	
NIVCI	RI	0.08±0.03*	371.20±66.48**	3,263±1,568	11.32±5.44	28%	

Net Particulate Nitrogen Removal River:Creek

RI: 0.41 DC: 0.05 DN: <0.01 MR: 0.21

Percent Area: normal and similar distributions: linear mixed effects model (marsh/site) as random effects; Used Ime which can handle unbalanced designs

NJ River Habitat Experience High Rates of Erosion

RI Coastal Resources Management Council (1939-2003) http://www.crmc.ri.gov/maps/maps_shorechange.html

NJ Partnership for the Delaware Estuary (1970-2014): Haaf, L., S. Demberger, A. Padeletti, D. Kreeger. 2017. Mid Atlantic Tidal Rapid Assessment: Development of the Shoreline Attribute Using Historical Change Analyses. Partnership for the Delaware Estuary. PDE Report No. 17-##.

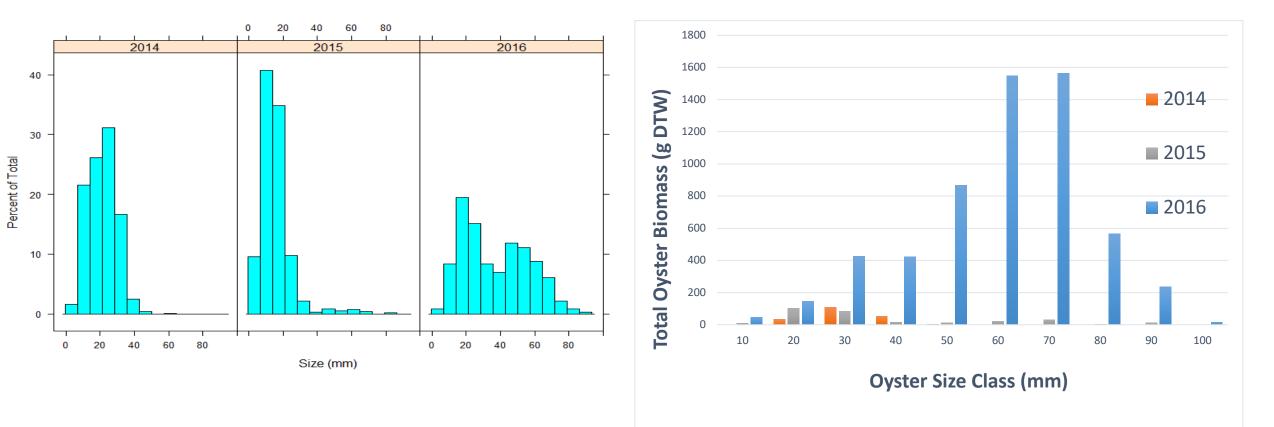
What Can We Do?

Living Shorelines Provide Ribbed Mussel Habitat

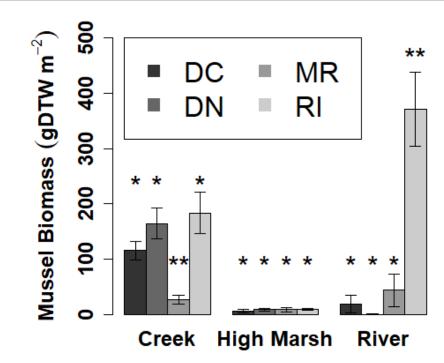
Over Time

Aispillion	Living	Shoreline:	Materials	installed	04/2014
mspinion	LIVING	Shorenne.	wateriais	motuneu	04/2014

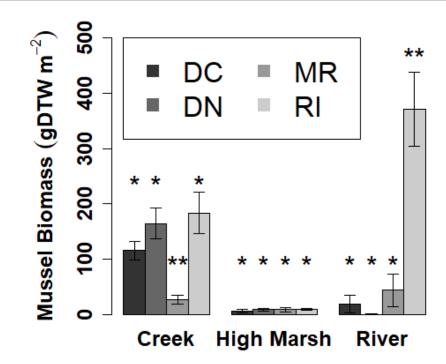
	Oyster Castles	Shellbags	Cusps	Total
11/2014 Oysters	1,146	1,273	-	2,419
11/2015 Oysters	7,510	2,038	-	9,548
11/2016 Oysters	16,927	6,408	1,205	24,540
11/2014 Ribbed Mussels	0	0	0	0
11/2015 Ribbed Mussels	107	N/A	26	133
11/2016 Ribbed Mussels	193	898	485	1,576



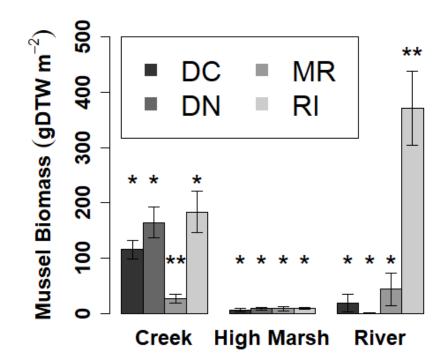
Changes in Population Structure and Biomass Drive Changes in Services


Size Structure of Population

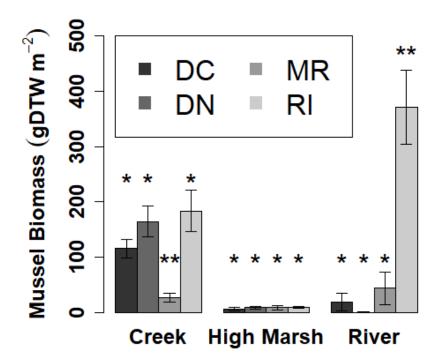
Biomass: Non-Linear Δ /Time


Older Oysters = Bulk of Physiological Services

	Living Shoreline	Annual Filtration Rate	Mussel Biomass	Gross Annual FR-TSS	Gross Annual FR-PN	Net FR-PN	
Density	Length (m)	(mg hr ⁻¹ gDTW ⁻¹)	(g DTW m ⁻²)	(kg yr⁻¹)	(kg yr⁻¹)	(kg yr ⁻¹)	Increase
Current NJ River			21.63	226.71	1.89	1.14	
	400	23.93 (TSS)					
	100	0.20 (PN)					

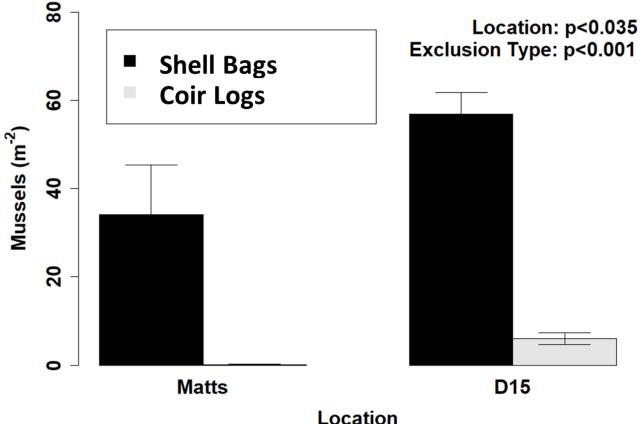


	Living						
Density	Shoreline Length (m)	Annual Filtration Rate (mg hr ⁻¹ gDTW ⁻¹)	Mussel Biomass (g DTW m ⁻²)	Gross Annual FR-TSS (kg yr ⁻¹)	Gross Annual FR-PN (kg yr ⁻¹)	Net FR-PN (kg yr⁻¹)	Increase
Current NJ River	- 0- ()		21.63	226.71	1.89	1.14	
NJ Creek	100	23.93 (TSS)	102.99	1,079.41	9.02	5.41	371%
	100	0.20 (PN)					



Density	Living Shoreline Length (m)	Annual Filtration Rate (mg hr ⁻¹ gDTW ⁻¹)	Mussel Biomass (g DTW m⁻²)	Gross Annual FR-TSS (kg yr ⁻¹)	Gross Annual FR-PN (kg yr ⁻¹)	Net FR-PN (kg yr ⁻¹)	Increase
Current NJ River			21.63	226.71	1.89	1.14	
NJ Creek	100	23.93 (TSS)	102.99	1,079.41	9.02	5.41	371%
Mean RI River/Creek	100	0.20 (PN)	237.10	2,485.13	20.77	12.46	991%

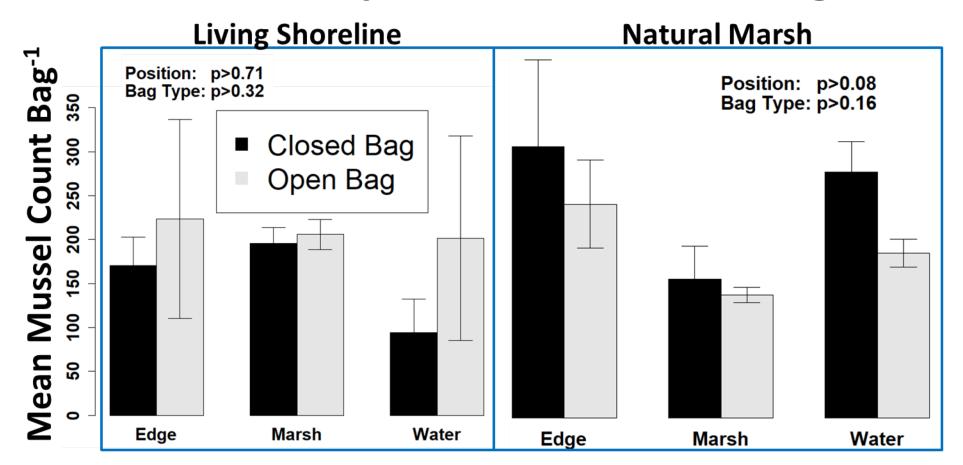
Density	Living Shoreline Length (m)	Annual Filtration Rate (mg hr ⁻¹ gDTW ⁻¹)	Mussel Biomass (g DTW m ⁻²)	Gross Annual FR-TSS (kg yr ⁻¹)	Gross Annual FR-PN (kg yr ⁻¹)	Net FR-PN (kg yr ⁻¹)	Incrosco
Density	Length (III)			(אפ אי א	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Increase
Current NJ River			21.63	226.71	1.89	1.14	
NJ Creek	100	23.93 (TSS)	102.99	1,079.41	9.02	5.41	371%
Mean RI River/Creek	100	0.20 (PN)	237.10	2,485.13	20.77	12.46	991%
RI River			371.20	3,890.67	32.52	19.51	1,615%


New Efforts are Focusing on Enhancing Ribbed Mussel Recruitment in Living Shorelines

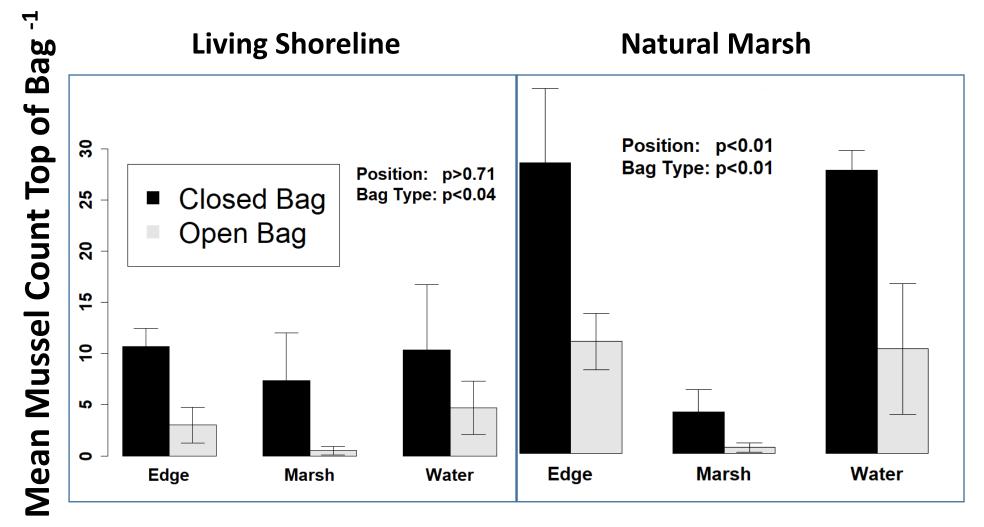
Questions

- 1. Is mussel density greater in shell bags than on coir-fiber logs in our older living shorelines?
- 2. Is mussel density greater in materials that exclude predators than those that allow access to predators?

Project Title: Enhancement of Ribbed Mussel Populations in Mid-Atlantic Salt Marshes and Living Shorelines for Water Quality Ecosystem Services



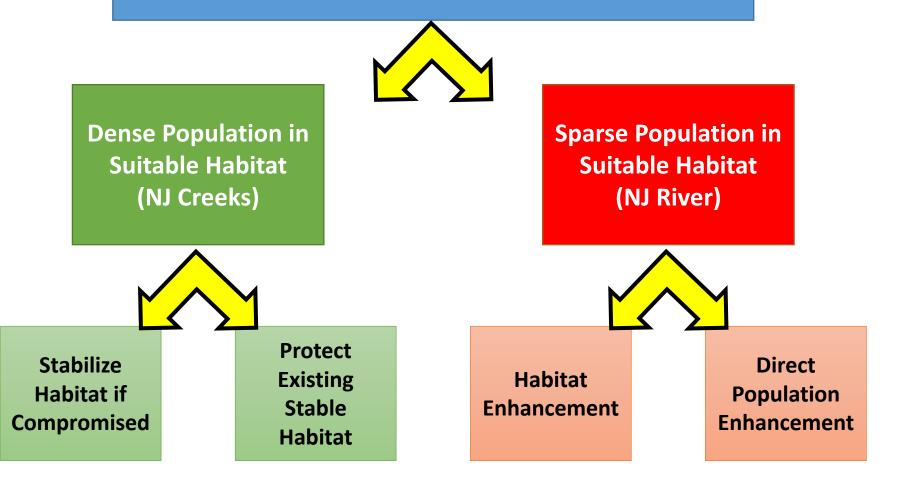
Is mussel density greater in shell bags that exclude predators than those that allow access to predators?



There was No Difference in Total Bag Recruitment Between Open and Closed Bags

Position Along Marsh Edge

Only 6%-8% of Total Recruitment was to Bag Surface


Position Along Marsh Edge

Implication: Substrate with only surface recruitment options may suffer from low ribbed mussel persistence without protection

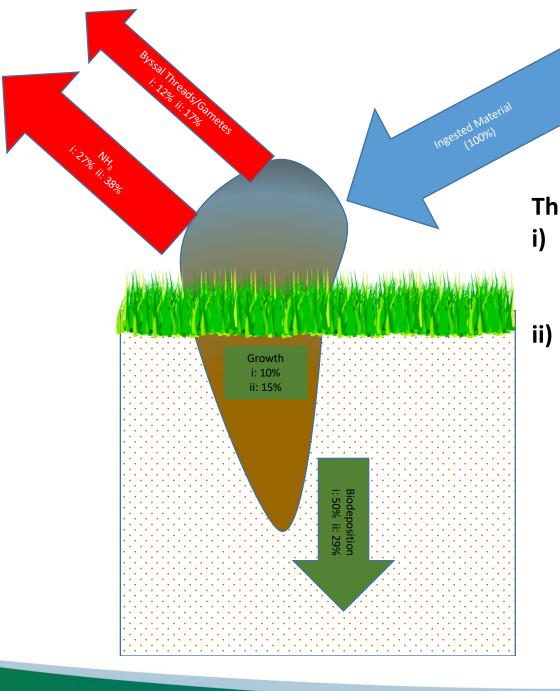
Management Approach: Conserve and Enhance

Assess Distribution and Magnitude of Ribbed Mussel Ecosystem Services

Conclusions: Considering Ribbed Mussels for Water Quality Uplift

- 1. Capable of filtering large quantities of TSS and particulate nitrogen
- 2. Services are largely concentrated in intra-marsh creek networks
- 3. Prime mussels habitat along primary channel edges are under-performing due to low mussel biomass
- 4. Living shoreline tactics can help to stem loss and rebuild populations
- 5. Maximize biomass enhancement likely by protecting developing populations
- 6. Two-pronged approach to ribbed mussel-mediated service maximization: Conserve and Enhance

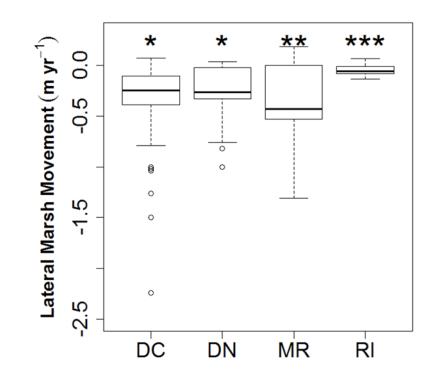
Questions or Comments


Joshua Moody, PhD Restoration Programs Manager (302) 655-4990, x115 | DelawareEstuary.org

Partnership for the DELAWARE ESTUARY

Connecting people, science, and nature for a healthy Delaware River and Bay

	River	High Marsh	Creek
Annual Filtration Rate PN (mg hr ⁻¹ gDTW ⁻¹)	0.2	0.2	0.2
Mussel Biomass (g m ⁻²)	20	10	100
Immersion Time (hr day ⁻¹)	12	8	10
Scaling Factor (kg ha⁻¹ yr⁻¹)	3.65	3.65	3.65
Area of 32,000 ha (%)	1,600 (5%)	22,400 (70%)	8,000 (25%)
Gross Filtration (tons yr ⁻¹)	309	1,441	6,172
Particulate Nitrogen Removal (60%) (tons yr ⁻¹)	185	865	3,703
Net Estuary-wide Ribbed Musse	l Particulate N	Nitrogen Filtration	4,753 tons yr ⁻¹


Delaware Estuary-wide Scaling: 32,000 ha of Salt Marsh Habitat

The fate of ingested nitrogen:

- i) NJ: Jordan and Valiela, (1982) under 50% absorption efficiency
-) RI: Galimany et al. (2013) under 71% absorption efficiency assuming equal fate partitioning percentages as Jordan and Valiela (1982) for the absorbed nitrogen.

Marsh	Habitat	TSS (mg l ⁻¹)	Potential Net PN Removal (kg ha ⁻¹ yr ⁻¹)		
		(n=18 NJ; n=6 RI)	Total	Biodeposit	Growth
DC	Creek	71.26 ± 8.84	65.25 ± 15.18	54.38 ± 12.65	10.88 ± 2.53
	High Marsh		20.80 ± 16.21	17.33 ± 13.50	3.47 ± 2.70
	River		3.17 ± 2.64	2.64 ± 2.20	0.53 ± 0.44
	Marsh-wide		29.74 ± 11.27	24.78 ± 9.39	4.96 ± 1.88
DN	Creek	107.13 ± 14.83	140.34 ± 24.98	116.95 ± 20.82	23.39 ± 4.16
	High Marsh		25.93 ± 14.02	21.61 ± 11.68	4.32 ± 2.34
	River		0.19 ± 0.11	0.16 ± 0.10	0.03 ± 0.02
	Marsh-wide		55.49 ± 23.07	46.24 ± 19.22	9.25 ± 3.85
MR	Creek	91.44 ± 5.81	35.26 ± 19.54	29.38 ± 16.28	5.88 ± 3.26
	High Marsh		25.91 ± 14.24	21.59 ± 11.87	4.32 ± 2.37
	River		7.32 ± 7.24	6.10 ± 6.04	1.22 ± 1.21
	Marsh-wide		22.83 ± 8.36	19.02 ± 6.97	3.80 ± 1.39
RI	Creek	13.12 ± 2.34	27.41 ± 6.40	18.48 ± 4.31	8.92 ± 2.08
	High Marsh		1.18 ± 0.26	0.79 ± 0.17	0.38 ± 0.08
	River		11.32 ± 5.44	7.64 ± 3.67	3.69 ± 1.77
	Marsh-wide		13.30± 4.52	8.97 ± 3.05	4.33 ± 1.47

Estimated Particulate Nitrogen Removal River: Creek

RI: 0.40 DC: 0.05 DN: <0.01 MR: 0.21

