Microbial source tracking: using old and new technologies to find out what is in our water

Barbara J. Campbell
University of Delaware
College of Marine and Earth Studies

Introduction

- Background
- Goals
- Sites
- Methods
- Results/Summary
- Future work and next steps

Snow Geese flyway

North Inlet Beach

Fecal indicators of contamination

- FIB -
 - Non-pathogenic bacteria found in fecal waste
 - Proxies for potential enteric pathogens
 - Threshold determined by quantifiable relationship between:
 - Density of indicator bacteria
 - Health risk to those using the water

Fecal Indicator Bacteria	Recommended by US EPA in:	Threshold for contamination (colonies/100 mL)	Notes
Fecal coliforms	1976	800	
Total coliforms	1976	2400	
Total Enterococcus	1986	104	Used by State of Delaware
E. Coli	1986	235 (freshwater only)	Not recommended for marine waters

Fecal indicators, continued

- Total Enterococcus -
 - Used by Delaware DNREC to determine water quality
 - Guarded beaches
 - Sampled weekly during summer
 - Closed when exceed threshold
 - Non-recreational waters
 - Sampled monthly
 - Historical purposes

Map of monitoring sites as percentage of samples that exceeded the single sample primary recreational water contact standard of 104 Enterococcus cfu/100 mL in the Delaware Inland Bays from 2004 to 2008. Legend: Green = 0 - 10%, Yellow = 10-25%, Orange = 25-75%, red = 75-100%.

From:

Delaware Center for the Inland Bays Environmental Indicators Series 2009-2010, Development of the Recreational Water Quality Indicator

Chris Bason

Human Pathogens in the environment

- Detection
 - Culture-based approaches
 - PCR*
 - Microarrays
- Activity
 - Not yet assayed
- Quantification
 - qPCR-based approaches
- Relationship to epidemiology

Rehoboth beach

^{*} See next slide for explanation

What is PCR?

-Isolates and amplifies a section of DNA

Pathogen-like Epsilonproteobacteria

- Helicobacter spp.
 - Helicobacter pylori
 - Asymptomatically colonizes guts of 20-80% human population in developed countries
 - Causative agent of:
 - Gastritis
 - Peptic ulcers
 - Gastric cancer
 - Presence/absence of virulence factors
 - Transmission route unknown believed to be fecal-oral
 - Found in VBNC state and associated with zooplankton and particles

Electron micrograph of *H. pylori* www.health.qld.gov.au

Goals of Project

- Detection of FIB and *Epsilonproteobacteria* in environment, June 2007-August 2008
 - Human-specific *Bacteroidetes* spp.
 - Helicobacter pylori, pathogenic H. pylori
- Correlation to traditional indicators of fecal pollution
- Correlation to environmental conditions
- Master's student, Katrina Twing

Sites studied

Methods

- Environmental parameters
 - Temp., salinity, DO, chlorophyll a, NO3, NH4, PO4, DO
- Measure FIB via traditional methods (TE counts)
- Measure FIB using molecular methods (PCR with human-specific *Bacteroides* primers)
- Detect *Epsilonproteobacteria* via PCR (whole water)
 - *Helicobacter* spp. primers
 - Helicobacter pylori primers
 - 16S
 - cagA (pathogen-specific)

Results

- Approx. 10% samples exceed recommended FIB limit
- Less than 4% are positive for human *Bacteroides*
- About 5% are positive for Helicobacter pylori

Sites studiedresults

= HumanBacteroides spp.

Results by site type

Sites- Helicobacter pylori

Results by site type

Relationship to environmental parameters

- TE counts >104
 - Low salinity
- Human *Bacteroides* spp.
 - Low nitrate/nitrite
- H. pylori
 - High salinity
 - Low chlorophyll a

Summary – past work

- No correlation between TE counts and the PCR detection of human *Bacteroides* or pathogenic *Epsilonproteobacteria*
- H. pylori and pathogen-specific H. pylori less prevalent, ranging from 3-9%; mostly in coastal and DE bay sites
- % positives were much greater when separated by year

What's next?

PCR based approaches are sensitive and specific, but...

- We really want to know what the source of the contamination is – is it human or animal?
 - Microbial Source Tracking
 - Use of high throughput sequencing approaches for detection and design of new quantitative PCR primers
- We really want to know how much is there and if it is viable.
 - Quantitation of contaminant by PCR from RNA

Microbial Source tracking

Sources of fecal pollution are typically mixed, but may arise mainly from a single source. Figure adapted from Figure 1 in (Roslev and Bukh 2011).

Microbial Source tracking

Purpose

- Determine the source of fecal contamination
- Molecular methods (do not rely on culturing)
- Indicative of potential pathogens
- Host specificity

Bacteroides spp.

- Distinct genetic variation among bacteria found in different hosts
- Strong correlation with enteric pathogens
 - Specifically Campylobacter spp.
- Can not survive for long periods of time outside of host

High throughput sequencing

Purpose

- Amplify a region of the genomes of all bacteria (ribosomal RNA or ribosomal RNA gene)
- Produce thousands to millions of sequences from a sample*
- Analyze the data to characterize the types of bacteria in the sample
- Can discriminate between sources of contamination, if enough known about the bacteria [sequences] found in different sources
- Work with Jorge Santo Domingo at EPA who has collections of fecal material from animals

Cost effective

Now generally less than \$100 a sample

* See next slide for images and information on HTS machines

Roche 454 machine

400+ bp read length

Can multiplex easily

Output ~1 million reads/\$10,000

Illumina HiSeq machine

100+ bp read lengths

Can multiplex easily

Output ~100 million reads/\$1,000

High throughput sequencing

- What to do with the data?
 - Design PCR primers to detect and quantitate specific bacteria from different sources
 - Test on known sources, original samples and new environmental samples

Are these bacteria viable?

- Viable bacteria contain both RNA and DNA in cells
- Dead bacteria generally contain only DNA
- Sometimes have 'naked' DNA in the sample
- Two molecular ways to test for viability:
 - Use RNA instead of DNA in tests
 - Treat samples to get rid of 'naked' DNA prior to cell lysis and extraction

Acknowledgements

- UD
 - David Kirchman
 - Katrina Twing
 - Liying Yu
- Citizens Monitoring Program
 - Ed Whereat
- Funding NOAASeagrant, NSF

- DNREC
 - Katie Painter
 - Mark Crane
 - Alison Boyer
 - Edythe Humphries
 - Sergio Huerta

What I would like from you

- Advise on
 - Where to collect samples
 - How often to collect samples
 - Types of potential sources
 - Archived fecal material from other animals?